updated: 2022-01-23_12:32:30-05:00
RL Closure under Union
Let A and B be two regular languages, then
$A\cup B={x|x\in A$ or $x\in B}$
if A->DFA and B->DFA then A$\cup$B->DFA
Proof by construction
- Suppose $A_1$ and $A_2$ are regular languages
- Then $M_1$ and $M_2$ are DFAs for $A_1$ and $A_2$
- Construct a DFA $M$ that recognizes $A_1\cup A_2$
- let $M_i=(Q_2,\Sigma,\delta_2, q_2,f_2)$
- Construct M to recognize $A_1\cup A_2$
- $M=Q,\Sigma,\delta,q_0,f)$
- $Q={(r_1,r_2)|r_1\in Q,$and $r_2\in Q}$
- $Q_1\times Q_2$
- $\Sigma$, the alphabet is same as $A_1$ and $A_2$
- $\delta$: for each $(r_1,r_2)\in Q$ and each $a\in \Sigma$
- $\delta((r_1,r_2),a)=(\delta(r_1,a),\delta(r_2,a))$
- $q_0$ is the pair $(q_1,q_2)$
- $F$ is the set of pairs in which either member is an accepting state of $M$ or $M_2$
- $f={(r_1,r_2|r_1\in f_1$ or $r_2 \in f_2}$
- $F=(F_1 \times Q_2)\cup (Q_1 \times F_2)$ <-- for union
- NOT F= F_1 X F_2